Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Nucl Med ; 65(4): 527-532, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453362

RESUMO

Fibroblast activation protein (FAP) is a promising diagnostic and therapeutic target in various solid tumors. This study aimed to assess the diagnostic efficiency of 68Ga-labeled FAP inhibitor (FAPI)-04 PET/CT for detecting lymph node metastasis in non-small cell lung cancer (NSCLC) and to investigate the correlation between tumor 68Ga-FAPI-04 uptake and FAP expression. Methods: We retrospectively enrolled 136 participants with suspected or biopsy-confirmed NSCLC who underwent 68Ga-FAPI-04 PET/CT for initial staging. The diagnostic performance of 68Ga-FAPI-04 for the detection of NSCLC was evaluated. The final histopathology or typical imaging features were used as the reference standard. The SUVmax and SUVmean, 68Ga-FAPI-avid tumor volume (FTV), and total lesion FAP expression (TLF) were measured and calculated. FAP immunostaining of tissue specimens was performed. The correlation between 68Ga-FAPI-04 uptake and FAP expression was assessed using the Spearman correlation coefficient. Results: Ninety-one participants (median age, 65 y [interquartile range, 58-70 y]; 69 men) with NSCLC were finally analyzed. In lesion-based analysis, the diagnostic sensitivity and positive predictive value of 68Ga-FAPI-04 PET/CT for detection of the primary tumor were 96.70% (88/91) and 100% (88/88), respectively. In station-based analysis, the diagnostic sensitivity, specificity, and accuracy for the detection of lymph node metastasis were 72.00% (18/25), 93.10% (108/116), and 89.36% (126/141), respectively. Tumor 68Ga-FAPI-04 uptake (SUVmax, SUVmean, FTV, and TLF) correlated positively with FAP expression (r = 0.470, 0.477, 0.582, and 0.608, respectively; all P ≤ 0.001). The volume parameters FTV and TLF correlated strongly with FAP expression in 31 surgical specimens (r = 0.700 and 0.770, respectively; both P < 0.001). Conclusion: 68Ga-FAPI-04 PET/CT had excellent diagnostic efficiency for detecting lymph node metastasis, and 68Ga-FAPI-04 uptake showed a close association with FAP expression in participants with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ivermectina , Neoplasias Pulmonares , Quinolinas , Idoso , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fibroblastos , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Ivermectina/análogos & derivados , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo
2.
J Orthop Translat ; 44: 125-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318490

RESUMO

Background: Osteoarthritis (OA) is the most common joint disease worldwide, but its cause remains unclear. Oestrogen protects against OA, but its clinical use is limited. G protein-coupled receptor 30 (GPR30) is a receptor that binds oestrogen, and GPR30 treatment has benefitted patients with some degenerative diseases. However, its effects on OA prevention and treatment remain unclear. Moreover, several studies have found that activation of estrogen receptors exerting anti-ferroptosis effects, which plays an important role in chondrocyte survival. Therefore, this study explored the general and ferroptosis-related effects and mechanisms of GPR30 in OA. Methods: Genome-wide RNA sequencing, western blotting, and immunohistochemistry were used to evaluate GPR30 expression and ferroptosis-related indicators in cartilage tissues from clinical patients. Next, we investigated the effects of G1 (a GPR30 receptor agonist) on the function and pathology of OA in an animal model. We also treated chondrocytes with erastin (ferroptosis agonist) plus G1, G15 (GPR30 receptor antagonist), GPR30 short hairpin RNA, or ferrostatin-1 (ferroptosis inhibitor), then measured cell viability and ferroptosis-related indices and performed proteomics analyses. Finally, western blotting and reverse transcription-polymerase chain reaction were used to assess the effects of G1 on yes-associated protein 1 (YAP1) and ferritin heavy chain 1 (FTH1) expression. Results: GPR30 expression was lower in the OA cartilage tissues than in the normal tissues, and G1 treatment significantly improved the locomotor ability of mice. Moreover, chondrocyte cell viability significantly decreased after erastin treatment, but G1 treatment concentration-dependently mitigated this effect. Furthermore, G1 treatment decreased phosphorylated YAP1 expression, increased activated YAP1 expression, and increased FTH1 transcription and protein expression, protecting against ferroptosis. Conclusion: GPR30 activation inhibited ferroptosis in chondrocytes by suppressing YAP1 phosphorylation, which regulates FTH1 expression.The Translational Potential of this Article: These results provide a novel potential target for therapeutic OA interventions.

3.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
4.
Burns Trauma ; 12: tkad058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250706

RESUMO

Background: Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing. Methods: We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an in vivo mouse model of diabetes (db/db) to assess wound healing, as well as the human keratinocyte HaCaT cell line. In the methodology, the authors utilized an array of approaches that included electron microscopy, small interfering RNA (siRNA) studies, RNA in situ hybridization, quantitative real-time reverse transcription PCR (qRT-PCR), the isolation, sequencing and differential expression of miRNAs, as well as the use of miR-4645-5p-specific knockdown with an inhibitor. Results: Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in 'autophagy' and 'process utilizing autophagic mechanism' in the 'biological process' category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy. Conclusions: Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. Collectively, the findings could aid in the development of a novel therapeutic strategy for diabetic wounds.

5.
Adv Exp Med Biol ; 1438: 33-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845436

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a major player in the oxygen sensor system as well as a transcription factor. HIF-1 is also associated in the pathogenesis of many brain diseases including Alzheimer's disease (AD), epilepsy and stroke. HIF-1 regulates the expression of many genes such as those involved in glycolysis, erythropoiesis, angiogenesis and proliferation in hypoxic condition. Despite several studies, the mechanism through which HIF-1 confers neuroprotection remains unclear, one of them is modulating metabolic profiles and inflammatory pathways. Characterization of the neuroprotective role of HIF-1 may be through its stabilization and the regulation of target genes that aid in the early adaptation to the oxidative stressors. It is interesting to note that mounting data from recent years point to an additional crucial regulatory role for hypoxia-inducible factors (HIFs) in inflammation. HIFs in immune cells regulate the production of glycolytic energy as well as innate immunity, pro-inflammatory gene expression, and mediates activation of pro-survival pathways. The present review highlights the contribution of HIF-1 to neuroprotection where inflammation is the crucial factor in the pathogenesis contributing to neural death. The potential mechanisms that contribute to neuroprotection as a result of the downstream targets of HIF-1α are discussed. Such mechanisms include those mediated through IL-10, an anti-inflammatory molecule involved in activating pro-survival signaling mechanisms via AKT/ERK and JAK/STAT pathways.


Assuntos
Regulação da Expressão Gênica , Neuroproteção , Humanos , Transdução de Sinais , Inflamação/genética , Fenótipo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
6.
Eur J Nucl Med Mol Imaging ; 50(13): 4064-4076, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526694

RESUMO

PURPOSE: To compare the efficacy of [68Ga]Ga-FAPI-04 PET/CT in primary or recurrent tumors and metastatic lesions of epithelial ovarian cancer (EOC) with that of fluorine-18 fluorodeoxyglucose ([18F]F-FDG) PET/CT. METHODS: Forty-nine patients (median age, 57 years; IQR, 51-66 years) with histologically proven primary or relapsed EOC were enrolled. Participants underwent [18F]F-FDG and [68Ga]Ga-FAPI-04 PET/CT. The detection rate, diagnostic accuracy, semiquantitative parameters, tumor staging, and clinical management of the tracers were compared. The diagnostic performance of [18F]F-FDG and [68Ga]Ga-FAPI-04 PET/CT was evaluated and compared using surgical pathology. Differences between methods regarding the peritoneal cancer index (PCI) using preoperative imaging, surgical PCI, and tumor markers (CA125, HE4) were also assessed regarding peritoneal metastases. RESULTS: Among the 49 patients, 28 had primary EOC; 21 had relapsed EOC. [68Ga]Ga-FAPI-04 PET/CT outperformed [18F]F-FDG PET/CT in detecting peritoneal metastases (96.8% vs. 83.0%; p < 0.001), retroperitoneal (99.5% vs. 91.4%; p < 0.001), and supradiaphragmatic lymph node metastases (100% vs. 80.4%; p < 0.001). Compared with [18F]F-FDG, [68Ga]Ga-FAPI-04 showed higher SUVmax for peritoneal metastases (17.31 vs. 13.68; p = 0.026) and retroperitoneal (8.72 vs. 6.56; p < 0.001) and supradiaphragmatic lymph node metastases (6.39 vs. 4.20; p < 0.001). Moreover, [68Ga]Ga-FAPI-04 PET/CT showed higher sensitivity compared with [18F]F-FDG PET/CT for detecting metastatic lymph nodes (80.6% vs. 61.3%; p = 0.031) and peritoneal metastases (97.5% vs. 75.9%; p < 0.001), using surgical pathology as the gold standard. Compared with [18F]F-FDG PET/CT, [68Ga]Ga-FAPI-04 PET/CT led to an upgrade in 14.3% and 33.3% of treatment-naive and relapse participants, resulting in management changes in 10.7% and 19.0% of the patients, respectively. The median PCIFAPI scores were significantly higher than PCIFDG (15 vs. 11; p < 0.001) and positively correlated with CA125 and HE4 levels and surgical PCI. CONCLUSION: [68Ga]Ga-FAPI-04 PET/CT achieved higher sensitivity than [18F]F-FDG PET/CT in the detection and diagnosis of lymph node and peritoneal metastases, suggesting advantages regarding the preoperative staging of patients with EOC and, thereby, improving treatment decision-making. TRIAL REGISTRATION: NCT05034146. Registered February 23, 2021.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Quinolinas , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Carcinoma Epitelial do Ovário/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem
7.
J Mol Med (Berl) ; 101(7): 891-903, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246980

RESUMO

Pancreatic adenocarcinoma (PDAC) is one of the most common cancers worldwide. Unfortunately, the prognosis of PDAC is rather poor, and for instance, in the USA, over 47,000 people die because of pancreatic cancer annually. Here, we demonstrate that high expression of acid sphingomyelinase in PDAC strongly correlates with long-term survival of patients, as revealed by the analysis of two independent data sources. The positive effects of acid sphingomyelinase expression on long-term survival of PDAC patients were independent of patient demographics as well as tumor grade, lymph node involvement, perineural invasion, tumor stage, lymphovascular invasion, and adjuvant therapy. We also demonstrate that genetic deficiency or pharmacological inhibition of the acid sphingomyelinase promotes tumor growth in an orthotopic mouse model of PDAC. This is mirrored by a poorer pathologic response, as defined by the College of American Pathologists (CAP) score for pancreatic cancer, to neoadjuvant therapy of patients co-treated with functional inhibitors of the acid sphingomyelinase, in particular tricyclic antidepressants and selective serotonin reuptake inhibitors, in a retrospective analysis. Our data indicate expression of the acid sphingomyelinase in PDAC as a prognostic marker for tumor progression. They further suggest that the use of functional inhibitors of the acid sphingomyelinase, at least of tricyclic antidepressants and selective serotonin reuptake inhibitors in patients with PDAC, is contra-indicated. Finally, our data also suggest a potential novel treatment of PDAC patients with recombinant acid sphingomyelinase. KEY MESSAGES: Pancreatic ductal adenocarcinoma (PDAC) is a common tumor with poor prognosis. Expression of acid sphingomyelinase (ASM) determines outcome of PDAC. Genetic deficiency or pharmacologic inhibition of ASM promotes tumor growth in a mouse model. Inhibition of ASM during neoadjuvant treatment for PDAC correlates with worse pathology. ASM expression is a prognostic marker and potential target in PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Antidepressivos Tricíclicos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Estudos Retrospectivos , Inibidores Seletivos de Recaptação de Serotonina , Esfingomielina Fosfodiesterase/genética , Humanos , Neoplasias Pancreáticas
8.
Biomed Pharmacother ; 163: 114759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105077

RESUMO

The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.


Assuntos
Leucemia Mieloide Aguda , Receptor 8 Toll-Like , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Benzazepinas/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Linhagem Celular Tumoral
9.
ACS Omega ; 8(6): 6067-6077, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816684

RESUMO

Positron emission tomography (PET)/near-infrared fluorescence (NIRF) dual-modal imaging presents an enticing prospect for tumor diagnosis and surgical navigation. In this study, we developed a novel probe IR808-DOTA for tumor-targeted PET/NIRF imaging, image-guided surgery, and photothermal therapy. This construct had better water solubility and pharmacokinetics than IR808 and had similar photophysical properties, tumor targeting ability, and photothermal anticancer effect to IR808. By a simple labeling process, IR808-DOTA was labeled with gallium-68 and applied as a PET probe for tumor imaging in MCF-7 tumor xenografted mice. IR808-DOTA itself acted as an NIRF imaging agent in the following surgery for intraoperative navigation to aid surgeons in the delineation of tumor margins and visualizing sentinel lymph nodes to facilitate a more thorough tumor resection. Irradiation by laser, IR808-DOTA could prominently inhibit tumor growth in MCF-7 subcutaneous tumor model mice by directly ablating tumor cells, inhibiting tumor proliferation, and promoting tumor cell apoptosis. In summary, 68Ga-DOTA-IR808 could enable a convenient and user-friendly workflow for tumor imaging and guided surgery, and therefore, it may have great prospects for clinical translation as a PET/NIRF dual-modal probe.

10.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790532

RESUMO

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Esfingomielina Fosfodiesterase , Esfingomielinas/metabolismo , Cloridrato de Fingolimode , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas
11.
Eur J Nucl Med Mol Imaging ; 50(7): 2114-2126, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808001

RESUMO

PURPOSE: This study was designed to compare the performance of 68Ga-FAPI-04 and 18F-FDG PET/CT for initial staging and recurrence detection of head and neck squamous cell carcinoma (HNSCC). METHODS: Prospectively, 77 patients with histologically proven or highly suspected HNSCC underwent paired 18F-FDG and 68Ga-FAPI-04 PET/CT in a week for either initial staging (n = 67) or restaging (n = 10). The diagnostic performance was compared for the two imaging approaches, especially for N staging. SUVmax, SUVmean, and target-to-background ratio (TBR) were assessed for paired positive lesions. Furthermore, change in management by 68Ga-FAPI-04 PET/CT and histopathologic FAP expression of some lesions were explored. RESULTS: 18F-FDG and 68Ga-FAPI-04 PET/CT exhibited a comparable detection efficiency for primary tumor (100%) and recurrence (62.5%). In the twenty-nine patients receiving neck dissection, 68Ga-FAPI-04 PET/CT showed greater specificity and accuracy in evaluating preoperative N staging than 18F-FDG based on patient (p = 0.031 and p = 0.070), neck side (p = 0.002 and p = 0.006), and neck level (p < 0.001 and p < 0.001). As for distant metastasis, 68Ga-FAPI-04 PET/CT detected more positive lesions than 18F-FDG (25 vs 23) and with higher SUVmax (7.99 ± 9.04 vs 3.62 ± 2.68, p = 0.002) by lesion-based analysis. The type of neck dissection in 9 cases (9/33) was altered by 68Ga-FAPI-04. Overall, clinical management was significantly changed in 10 patients (10/61). Three patients had a follow-up 68Ga-FAPI-04 PET/CT post neoadjuvant therapy: One showed complete remission, and the others showed progression. The 68Ga-FAPI-04 uptake intensity was confirmed to be consistent with FAP expression. CONCLUSION: 68Ga-FAPI-04 outperforms 18F-FDG PET/CT in evaluating preoperative N staging in patients with HNSCC. Furthermore, 68Ga-FAPI-04 PET/CT also shows the potential in clinical management and monitoring response to treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Quinolinas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
12.
Microbiol Spectr ; 11(1): e0190622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625575

RESUMO

The gut microbiota is known to play a role in regulating host metabolism, yet the mechanisms underlying this regulation are not well elucidated. Our study aimed to characterize the differences in gut microbiota compositions and their roles in iron absorption between wild-type (WT) and CD163/pAPN double-gene-knockout (DKO) weaned piglets. A total of 58 samples along the entire digestive tract were analyzed for microbial community using 16S rRNA gene sequencing. The colonic microbiota and their metabolites were determined by metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS), respectively. Our results showed that no alterations in microbial community structure and composition were observed between DKO and WT weaned piglets, with the exception of colonic microbiota. Interestingly, the DKO piglets had selectively increased the relative abundance of the Leeia genus belonging to the Neisseriaceae family and decreased the Ruminococcaceae_UCG_014 genus abundance. Functional capacity analysis showed that organic acid metabolism was enriched in the colon in DKO piglets. In addition, the DKO piglets showed increased iron levels in important tissues compared with WT piglets without any pathological changes. Pearson's correlation coefficient indicated that the specific bacteria such as Leeia and Ruminococcaceae_UCG_014 genus played a key role in host iron absorption. Moreover, the iron levels had significantly (P < 0.05) positive correlation with microbial metabolites, particularly carboxylic acids and their derivatives, which might increase iron absorption by preventing iron precipitation. Overall, this study reveals an interaction between colonic microbiota and host metabolism and has potential significance for alleviating piglet iron deficiency. IMPORTANCE Iron deficiency is a major risk factor for iron deficiency anemia, which is among the most common nutritional disorders in piglets. However, it remains unclear how the gut microbiota interacts with host iron absorption. The current report provides the first insight into iron absorption-microbiome connection in CD163/pAPN double knockout piglets. The present results showed that carboxylic acids and their derivatives contributed to the absorption of nonheme iron by preventing ferric iron precipitation.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Antígenos CD , Colo/microbiologia
13.
Adv Exp Med Biol ; 1395: 65-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527615

RESUMO

Perinatal hypoxia leads to changes in cerebral angiogenesis and persistent structural and functional changes in the adult brain. It may also result in greater vulnerability to subsequent challenges. We investigated the effect of postnatal day 2 (P2) hypoxic preconditioning on adult brain capillary density and brain vascular endothelial growth factor (VEGF) expression in mice. P2 mice were exposed to hypoxia (5% O2) in a normobaric chamber for 2 h then returned to normoxia while their littermates remained in normoxia (P2 control). After 2-6 months, they were euthanised and their brains were removed for capillary density determination. Another set of animals (P2 hypoxic mice and P2 controls) were euthanised at 2, 10, 23, and 60 days after birth and brain VEGF expression was assessed by western blot. Adult brain capillary density was significantly increased in the P2 hypoxic mice when compared to the P2 control mice. Additionally, VEGF expression appeared to be elevated in the P2-hypoxia mice when compared to the P2-control mice at all time points, and VEGF levels in P2-hypoxia mice declined with age similarly to P2-control mice. These data demonstrate that transient early-postnatal hypoxic stress leads to an increase in capillary density that persists in the adult, possibly due to increased VEGF expression. These results might be explained by epigenetic factors in the VEGF gene.


Assuntos
Hipóxia Encefálica , Fator A de Crescimento do Endotélio Vascular , Gravidez , Feminino , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Capilares/metabolismo , Encéfalo/metabolismo
14.
Medicine (Baltimore) ; 101(31): e29681, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35945727

RESUMO

RATIONALE: Iatrogenic gastrointestinal perforation is a known uncommon complication of colonoscopy. The perforation usually occurs in the colon itself. Rarely, colonoscopic procedures can also cause the perforations of the small intestine. PATIENT CONCERNS AND DIAGNOSES: We describe the case of a 70-year-old man who experienced abdominal pain several hours after electrical polypectomy in the transverse colon. Urgent abdominal computed tomography scans showed a few bubbles on the frontal surface around the liver and a little extraluminal free air in the upper abdomen. Urgent exploratory laparotomy revealed a round perforation with a diameter of approximately 5 mm in the ileum 80 cm proximal to the ileocecal valve, accompanied by the outflow of intestinal contents. A small bowel perforation by thermal injury was diagnosed during colonic polypectomy. INTERVENTIONS AND OUTCOMES: The ileal perforation was repaired primarily after debridement of the perforation site and abdominal cavity. The patient recovered well after surgery. Histopathological examination of the perforation site demonstrated inflammatory necrosis and infiltration of inflammatory cells. LESSONS: Small bowel perforation should be considered after colonoscopic procedures although the incidence is exceedingly rare. Urgent exploratory laparotomy is warranted when a visceral perforation is identified after colonoscopy.


Assuntos
Perfuração Intestinal , Idoso , Colectomia/efeitos adversos , Colo/cirurgia , Colonoscopia/efeitos adversos , Humanos , Perfuração Intestinal/diagnóstico , Perfuração Intestinal/etiologia , Perfuração Intestinal/cirurgia , Laparotomia/efeitos adversos , Masculino
15.
J Agric Food Chem ; 70(20): 5961-5974, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576456

RESUMO

Cadmium (Cd) contamination in soils and accumulation in cereal grains have posed food security risks and serious health concerns worldwide. Understanding the Cd transport process and its management for minimizing Cd accumulation in cereals may help to improve crop growth and grain quality. In this review, we summarize Cd uptake, translocation, and accumulation mechanisms in cereal crops and discuss efficient measures to reduce Cd uptake as well as potential remediation strategies, including the applications of plant growth regulators, microbes, nanoparticles, and cropping systems and developing low-Cd grain cultivars by CRISPR/Cas9. In addition, miRNAs modulate Cd translocation, and accumulation in crops through the regulation of their target genes was revealed. Combined use of multiple remediation methods may successfully decrease Cd concentrations in cereals. The findings in this review provide some insights into innovative and applicable approaches for reducing Cd accumulation in cereal grains and sustainable management of Cd-contaminated paddy fields.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Produtos Agrícolas/genética , Grão Comestível/química , Grão Comestível/genética , Oryza/genética , Solo , Poluentes do Solo/análise
16.
Int J Urol Nurs ; 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35600258

RESUMO

Lithotripsy is the primary form of treatment for ureteral calculus. According to clinical data, ureteroscopic lithotripsy (URSL) is characterized by better efficacy, a lower risk of complications, and a quicker postoperative recovery, when compared with open surgery. However, elderly patients often have a variety of chronic diseases that can directly or indirectly influence intraoperative care and postoperative recovery. It is important that medical staff closely observe changes in the postoperative condition of patients and provide them with the best quality care. In order to control the progression of disease and reduce mortality rates, it is very important to promptly eliminate the cause of shock, supplement blood volume, and correct cardiovascular disorders. During the pandemic caused by coronavirus disease 2019 (COVID-19), there has been a significant focus on management, predominantly operating rooms but also intensive care units (ICUs), to ensure that hospitals can provide prompt and effective diagnosis and treatment for every patient with COVID-19 and also prevent the spread of the virus and guarantee the safety of medical staff. During surgery on patients suspected of having COVID-19, it is important that specific personnel take control of the designated work and implement three strict levels of protection to prevent the transmission of the virus by air, droplets, and personal contact. Attention should be paid to the transfer of patients, the protection of medical staff, the management and control of negative pressure operation rooms, and postoperative treatment, thereby ensuring the safety of patients and medical staff. In this case report, we describe the nursing experience of rescuing a patient with COVID-19 who developed septic shock following flexible ureteroscopic holmium laser lithotripsy. The causes of septic shock were subsequently examined to inform a new protective strategy for rescuing patients with COVID-19 in the operating room and ICU, and to prevent and control cross-infection with the virus during surgery.

17.
Mol Pharm ; 19(5): 1368-1377, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393860

RESUMO

Inflammation plays a significant role in many physiological and pathological processes. Molecular imaging could provide functional as well as anatomical information for visualizing various inflammatory diseases. Advancements in imaging tracers for inflammation would improve the accuracy of diagnosis and monitoring, thus facilitating patient care. The positron emission tomography (PET) imaging tracer, 68Ga-labeled antagonist peptide Trp-Arg-Trp-Trp-Trp-Trp (WRWWWW, WRW4), targets formyl peptide receptor 2 (FPR2), which is in turn widely distributed in a variety of tissues and is associated with many inflammatory diseases. In the current study, we aimed to investigate the potential of 68Ga-WRW4 for detecting and monitoring inflammatory lesions in mice. We established an inflammation mouse model by the intramuscular injection of turpentine oil into the left thigh. WRW4 was labeled with 68Ga with an overall radiochemical yield >90% and radiochemical purity >99%. 68Ga-WRW4 uptake in inflamed muscle peaked on day 2 (1.14 ± 0.01 percentage of the injected dose per gram of tissue (%ID/g)) and the uptake ratio of inflammatory/normal muscle also reached a maximum (12.36 ± 2.35). Strong PET signals were detected in the left thigh at 60 min after the injection of 68Ga-WRW4 in experimental mice, but weak or no signals were detected in mice in the blocking and control groups. 68Ga-WRW4 uptake was in agreement with the dynamics of immune cell infiltration during the inflammatory reaction. These results suggest that 68Ga-WRW4 is a promising PET tracer suitable for the noninvasive detection of FPR2 expression and for monitoring inflammatory activity in inflammation-bearing mice.


Assuntos
Radioisótopos de Gálio , Receptores de Formil Peptídeo , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Inflamação/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química
18.
Semin Fetal Neonatal Med ; 27(1): 101322, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953760

RESUMO

Neonatal diseases such as hypoxic ischemic encephalopathy, diseases of prematurity and congenital disorders carry increased morbidity and mortality. Despite technological advancements, their incidence remains largely unabated. Stem cell (SC) interventions are novel therapies in the neonatal world. In pre-clinical models of neonatal diseases, SC applications have shown encouraging results. SC sources vary, with the bone marrow being the most utilized. However, the ability to harvest bone marrow SCs from neonates is limited. Placental-tissue derived SCs (PTSCs), provide an alternative and highly attractive source. Human placentas, the cornerstone of fetal survival, are abundant with such cells. Comparing to adult pools, PTSCs exhibit increased potency, decreased immunogenicity and stronger anti-inflammatory effects. Several types of PTSCs have been identified, with mesenchymal stem cells being the most utilized population. This review will focus on PTSCs and their pre-clinical and clinical applications in neonatology.


Assuntos
Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Doenças do Prematuro , Adulto , Feminino , Humanos , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Doenças do Recém-Nascido/terapia , Doenças do Prematuro/epidemiologia , Placenta , Gravidez , Células-Tronco
19.
Circulation ; 144(7): 539-555, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34111939

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Assuntos
Técnicas de Transferência de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Nanopartículas , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Alvéolos Pulmonares/anormalidades , Fator de Transcrição STAT3/genética , Remodelação das Vias Aéreas/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ecocardiografia , Fibrose , Fatores de Transcrição Forkhead/deficiência , Terapia Genética , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/diagnóstico , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Camundongos , Camundongos Transgênicos , Densidade Microvascular/genética , Miofibroblastos/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Fator de Transcrição STAT3/administração & dosagem , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Remodelação Vascular/genética
20.
Cell ; 184(7): 1865-1883.e20, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636127

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding of the RNA virus and its interactions with host proteins could improve therapeutic interventions for COVID-19. By using icSHAPE, we determined the structural landscape of SARS-CoV-2 RNA in infected human cells and from refolded RNAs, as well as the regulatory untranslated regions of SARS-CoV-2 and six other coronaviruses. We validated several structural elements predicted in silico and discovered structural features that affect the translation and abundance of subgenomic viral RNAs in cells. The structural data informed a deep-learning tool to predict 42 host proteins that bind to SARS-CoV-2 RNA. Strikingly, antisense oligonucleotides targeting the structural elements and FDA-approved drugs inhibiting the SARS-CoV-2 RNA binding proteins dramatically reduced SARS-CoV-2 infection in cells derived from human liver and lung tumors. Our findings thus shed light on coronavirus and reveal multiple candidate therapeutics for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , RNA Viral , Proteínas de Ligação a RNA/antagonistas & inibidores , SARS-CoV-2 , Animais , Linhagem Celular , Chlorocebus aethiops , Aprendizado Profundo , Humanos , Conformação de Ácido Nucleico , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA